Currently being updated.
Automatic reload in seconds.


 
Subscribe: RSS Podcasts iTunes

Episode 3039             Episode 3041
Episode 3040

Digital holographic microscopy
Sat, 2025-Aug-30 00:12 UTC
Length - 3:36

Direct Link

Welcome to random Wiki of the Day, your journey through Wikipedia's vast and varied content, one random article at a time.

The random article for Saturday, 30 August 2025, is Digital holographic microscopy.

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm.

Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

Holography was invented by Dennis Gabor to improve electron microscopy. Nevertheless, it never found many concrete and industrial applications in this field.

Actually, DHM has mostly been applied to light microscopy. In this field, it has shown unique applications for 3D characterization of technical samples and enables quantitative characterization of living cells.

In materials science, DHM is routinely used for research in academic and industrial labs. Depending on the application, microscopes can be configured for both transmission and reflection purposes. DHM is a unique solution for 4D (3D + time) characterization of technical samples, when information needs to be acquired over a short time interval. It is the case for measurements in noisy environments, in presence of vibrations, when the samples move, or when the shape of samples change due to external stimuli, such as mechanical, electrical, or magnetic forces, chemical erosion or deposition and evaporation. In life sciences, DHM is usually configured in transmission mode. This enables label-free quantitative phase measurement (QPM), also called quantitative phase imaging (QPI), of living cells. Measurements do not affect the cells, enabling long-term studies. It provides information that can be interpreted into many underlying biological processes as explained in the section "Living cells imaging" below.

This recording reflects the Wikipedia text as of 00:12 UTC on Saturday, 30 August 2025.

For the full current version of the article, see Digital holographic microscopy on Wikipedia.

This podcast uses content from Wikipedia under the Creative Commons Attribution-ShareAlike License.

Visit our archives at wikioftheday.com and subscribe to stay updated on new episodes.

Follow us on Mastodon at @wikioftheday@masto.ai.

Also check out Curmudgeon's Corner, a current events podcast.

Until next time, I'm standard Raveena.

Archive
2017:MayJunJulAugSepOctNovDec
2018:JanFebMarAprMayJunJulAugSepOctNovDec
2019:JanFebMarAprMayJunJulAugSepOctNovDec
2020:JanFebMarAprMayJunJulAugSepOctNovDec
2021:JanFebMarAprMayJunJulAugSepOctNovDec
2022:JanFebMarAprMayJunJulAugSepOctNovDec
2023:JanFebMarAprMayJunJulAugSepOctNovDec
2024:JanFebMarAprMayJunJulAugSepOctNovDec
2025:JanFebMarAprMayJunJulAugSep

Most Recent Episodes


Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2025-09-03 02:47:28 UTC
Original calculation time was 0.2232 seconds

Page displayed at 2025-09-05 10:06:40 UTC
Page generated in 0.0121 seconds