Subscribe: RSS Podcasts iTunes
wikiofthedaymasto.ai
  Buy WotD Stuff!!
Episode 2520             Episode 2522
Episode 2521

Tetrahedrally diminished dodecahedron
Fri, 2024-Mar-29 00:04 UTC
Length - 2:39

Direct Link

Welcome to random Wiki of the Day where we read the summary of a random Wikipedia page every day.

The random article for Friday, 29 March 2024 is Tetrahedrally diminished dodecahedron.

In geometry, a tetrahedrally diminished dodecahedron (also tetrahedrally stellated icosahedron or propello tetrahedron) is a topologically self-dual polyhedron made of 16 vertices, 30 edges, and 16 faces (4 equilateral triangles and 12 identical quadrilaterals). A canonical form exists with two edge lengths at 0.849 : 1.057, assuming that the radius of the midsphere is 1. The kites remain isosceles.

It has chiral tetrahedral symmetry, and so its geometry can be constructed from pyritohedral symmetry of the pseudoicosahedron with 4 faces stellated, or from the pyritohedron, with 4 vertices diminished. Within its tetrahedral symmetry, it has geometric varied proportions. By Dorman Luke dual construction, a unique geometric proportion can be defined. The kite faces have edges of length ratio ~ 1:0.633.

Topologically, the triangles are always equilateral, while the quadrilaterals are irregular, although the two adjacent edges that meet at the vertices of a tetrahedron are equal.

As a self-dual hexadecahedron, it is one of 302404 forms, 1476 with at least order 2 symmetry, and the only one with tetrahedral symmetry. As a diminished regular dodecahedron, with 4 vertices removed, the quadrilaterals faces are trapezoids.

As a stellation of the regular icosahedron it is one of 32 stellations defined with tetrahedral symmetry. It has kite faces. In Conway polyhedron notation, it can be represented as pT, applying George W. Hart's propeller operator to a regular tetrahedron.

This recording reflects the Wikipedia text as of 00:04 UTC on Friday, 29 March 2024.

For the full current version of the article, see Tetrahedrally diminished dodecahedron on Wikipedia.

This podcast uses content from Wikipedia under the Creative Commons Attribution-ShareAlike License.

Visit our archives at wikioftheday.com and subscribe to stay updated on new episodes.

Follow us on Mastodon at @wikioftheday@masto.ai.

Also check out Curmudgeon's Corner, a current events podcast.

Until next time, I'm Niamh Neural.

Archive
2017:MayJunJulAugSepOctNovDec
2018:JanFebMarAprMayJunJulAugSepOctNovDec
2019:JanFebMarAprMayJunJulAugSepOctNovDec
2020:JanFebMarAprMayJunJulAugSepOctNovDec
2021:JanFebMarAprMayJunJulAugSepOctNovDec
2022:JanFebMarAprMayJunJulAugSepOctNovDec
2023:JanFebMarAprMayJunJulAugSepOctNovDec
2024:JanFebMarAprMayJunJulAugSepOctNov

Most Recent Episodes


Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2024-11-21 03:38:55 UTC
Original calculation time was 0.2866 seconds

Page displayed at 2024-11-21 09:13:45 UTC
Page generated in 0.0007 seconds