Currently being updated.
Automatic reload in seconds.


 
Subscribe: RSS Podcasts iTunes
Episode 1035             Episode 1037
Episode 1036

Green's function
Wed, 2020-Mar-04 01:08 UTC
Length - 2:26

Direct Link

Welcome to popular Wiki of the Day where we read the summary of a popular Wikipedia page every day.

With 231,051 views on Tuesday, 3 March 2020 our article of the day is Green's function.

In mathematics, a Green's function is response to the elementary impulse of an inhomogeneous linear differential operator, which is defined on a domain with specified initial or boundary conditions.

This means that if L is the linear differential operator, then



the Green's function G is the solution of the equation LG = δ, where δ is Dirac's delta function;

the solution of the initial-value problem Ly = f is the convolution (G * f), where G is the Green's function. Through the superposition principle, given a linear ordinary differential equation (ODE), L(solution) = source, one can first solve L(green) = δs, for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

Green's functions are named after the British mathematician George Green, who first developed the concept in the 1830s. In the modern study of linear partial differential equations, Green's functions are studied largely from the point of view of fundamental solutions instead.

Under many-body theory, the term is also used in physics, specifically in quantum field theory, aerodynamics, aeroacoustics, electrodynamics, seismology and statistical field theory, to refer to various types of correlation functions, even those that do not fit the mathematical definition. In quantum field theory, Green's functions take the roles of propagators.

This recording reflects the Wikipedia text as of 01:08 UTC on Wednesday, 4 March 2020.

For the full current version of the article, see Green's function on Wikipedia.

This podcast is produced by Abulsme Productions based on Wikipedia content and is released under a Creative Commons Attribution-ShareAlike License.

Visit wikioftheday.com for our archives, sister podcasts, and swag. Please subscribe to never miss an episode. You can also follow @WotDpod on Twitter.

Abulsme Productions produces the current events podcast Curmudgeon's Corner as well. Check it out in your podcast player of choice.

This has been Ivy. Thank you for listening to popular Wiki of the Day.

For current episodes, or for the rest of the Wiki of the Day family of podcasts go here.


Archive Episodes:
1-100  101-200  201-300  301-400  401-500
501-600  601-700  701-800  801-900  901-1000
1001-1100  1101-1200  1201-1300  1301-1400  1401-1500
1501-1600  1601-1700  1701-1800  1801-1888  

  Buy WotD Stuff!!

Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2022-07-04 02:56:53 UTC
Original calculation time was 2.0230 seconds

Page displayed at 2022-07-05 06:14:08 UTC
Page generated in 0.0043 seconds