Currently being updated.
Automatic reload in seconds.


 
Subscribe: RSS Podcast iTunes
wikiofthedaymasto.ai
  Buy WotD Stuff!!
Episode 1891             Episode 1893
Episode 1892

Globular cluster
Sun, 2022-Jul-10 00:51 UTC
Length - 2:43

Direct Link

Welcome to featured Wiki of the Day where we read the summary of the featured Wikipedia article every day.

The featured article for Sunday, 10 July 2022 is Globular cluster.

A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of member stars. Their name is derived from Latin globulus (small sphere). Globular clusters are occasionally known simply as "globulars".

Although one globular cluster, Omega Centauri, was observed in antiquity and long thought to be a star, recognition of the clusters' true nature came with the advent of telescopes in the 17th century. In early telescopic observations globular clusters appeared as fuzzy blobs, leading French astronomer Charles Messier to include many of them in his catalog of astronomical objects that he thought could be mistaken for comets. Using larger telescopes, 18th-century astronomers recognized that globular clusters are groups of many individual stars. Early in the 20th century the distribution of globular clusters in the sky was some of the first evidence that the Sun is far from the center of the Milky Way.

Globular clusters are found in nearly all galaxies. In spiral galaxies like the Milky Way they are mostly found in the outer spheroidal part of the galaxy – the galactic halo. They are the largest and most massive type of star cluster, tending to be older, denser, and composed of lower abundances of heavy elements than open clusters, which are generally found in the disks of spiral galaxies. The Milky Way has more than 150 known globulars, and there may be many more.

The origin of globular clusters and their role in galactic evolution are unclear. Some are among the oldest objects in their galaxies and even the universe, constraining estimates of the universe's age. Star clusters were formerly thought to consist of stars that all formed at the same time from one star-forming nebula, but nearly all globular clusters contain stars that formed at different times, or that have differing compositions. Some clusters may have had multiple episodes of star formation, and some may be remnants of smaller galaxies captured by larger galaxies.





This recording reflects the Wikipedia text as of 00:51 UTC on Sunday, 10 July 2022.

For the full current version of the article, see Globular cluster on Wikipedia.

This podcast is produced by Abulsme Productions based on Wikipedia content and is released under a Creative Commons Attribution-ShareAlike License.

Visit wikioftheday.com for our archives, sister podcasts, and swag. Please subscribe to never miss an episode. You can also follow @WotDpod on Twitter.

Abulsme Productions produces the current events podcast Curmudgeon's Corner as well. Check it out in your podcast player of choice.

This has been Arthur Neural. Thank you for listening to featured Wiki of the Day.

Archive
2017:MayJunJulAugSepOctNovDec
2018:JanFebMarAprMayJunJulAugSepOctNovDec
2019:JanFebMarAprMayJunJulAugSepOctNovDec
2020:JanFebMarAprMayJunJulAugSepOctNovDec
2021:JanFebMarAprMayJunJulAugSepOctNovDec
2022:JanFebMarAprMayJunJulAugSepOctNovDec
2023:JanFebMarAprMayJunJulAugSepOctNovDec
2024:JanFebMarApr

Most Recent Episodes


Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2024-04-22 12:42:23 UTC
Original calculation time was 2.8629 seconds

Page displayed at 2024-04-24 23:50:51 UTC
Page generated in 0.0033 seconds