Currently being updated. Automatic reload in seconds. | ||

Follow @WotDpod | Subscribe: |
Buy WotD Stuff!! |

← Episode 33 |
For current episodes, or for the rest of the Wiki of the Day family of podcasts go here. | Episode 35 → |

Special relativityTue, 2017-Jun-06 02:01 UTC Length - 4:58 Welcome to popular Wiki of the Day where we read the summary of a popular Wikipedia page every day. With 698,109 views on Monday, 05 June 2017 our article of the day is Special relativity. In physics, special relativity (SR, also known as the special theory of relativity or STR) is the generally accepted and experimentally well-confirmed physical theory regarding the relationship between space and time. In Albert Einstein's original pedagogical treatment, it is based on two postulates: The laws of physics are invariant (i.e. identical) in all inertial systems (non-accelerating frames of reference). The speed of light in a vacuum is the same for all observers, regardless of the motion of the light source. It was originally proposed in 1905 by Albert Einstein in the paper "On the Electrodynamics of Moving Bodies". The inconsistency of Newtonian mechanics with Maxwell's equations of electromagnetism and the lack of experimental confirmation for a hypothesized luminiferous aether led to the development of special relativity, which corrects mechanics to handle situations involving motions at a significant fraction of the speed of light (known as relativistic velocities). As of today, special relativity is the most accurate model of motion at any speed when gravitational effects are negligible. Even so, the Newtonian mechanics model is still useful (due to its simplicity and high accuracy) as an approximation at small velocities relative to the speed of light. Not until Einstein developed general relativity, to incorporate general (or accelerated) frames of reference and gravity, was the phrase "special relativity" employed. A translation that has often been used is "restricted relativity"; "special" really means "special case". Special relativity implies a wide range of consequences, which have been experimentally verified, including length contraction, time dilation, relativistic mass, mass–energy equivalence, a universal speed limit and relativity of simultaneity. It has replaced the conventional notion of an absolute universal time with the notion of a time that is dependent on reference frame and spatial position. Rather than an invariant time interval between two events, there is an invariant spacetime interval. Combined with other laws of physics, the two postulates of special relativity predict the equivalence of mass and energy, as expressed in the mass–energy equivalence formula E = mc2, where c is the speed of light in a vacuum. A defining feature of special relativity is the replacement of the Galilean transformations of Newtonian mechanics with the Lorentz transformations. Time and space cannot be defined separately from each other. Rather space and time are interwoven into a single continuum known as spacetime. Events that occur at the same time for one observer can occur at different times for another. The theory is "special" in that it only applies in the special case where the curvature of spacetime due to gravity is negligible. In order to include gravity, Einstein formulated general relativity in 1915. Special relativity, contrary to some outdated descriptions, is capable of handling accelerations as well as accelerated frames of reference. As Galilean relativity is now considered an approximation of special relativity that is valid for low speeds, special relativity is considered an approximation of general relativity that is valid for weak gravitational fields, i.e. at a sufficiently small scale and in conditions of free fall. Whereas general relativity incorporates noneuclidean geometry in order to represent gravitational effects as the geometric curvature of spacetime, special relativity is restricted to the flat spacetime known as Minkowski space. A locally Lorentz-invariant frame that abides by special relativity can be defined at sufficiently small scales, even in curved spacetime. Galileo Galilei had already postulated that there is no absolute and well-defined state of rest (no privileged reference frames), a principle now called Galileo's principle of relativity. Einstein extended this principle so that it accounted for the constant speed of light, a phenomenon that had been recently observed in the Michelson–Morley experiment. He also postulated that it holds for all the laws of physics, including both the laws of mechanics and of electrodynamics. This recording reflects the Wikipedia text as of 02:01 UTC on Tuesday, 06 June 2017. For the full current version of the article, go to http://en.wikipedia.org/wiki/Special_relativity. This podcast is produced by Abulsme Productions based on Wikipedia content and is released under a Creative Commons Attribution-ShareAlike License. Abulsme Productions also produces Curmudgeon's Corner, a weekly current events podcast where the hosts discuss whatever is hot in the news each week. Check it out in your podcast player of choice. This has been Joanna. Thank you for listening to popular Wiki of the Day. If you enjoyed this podcast, you can find our archive, and our sister podcasts random Wiki of the Day and featured Wiki of the Day at wikioftheday.com. Subscribe and tell your friends to listen as well! |

Episodes 1-100 Episodes 101-200 Episodes 201-300 Episodes 301-387

Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!

Page cached at 2018-05-26 02:14:51 UTC

Original calculation time was 0.4875 seconds

Page displayed at 2018-05-28 10:03:01 UTC

Page generated in 0.0057 seconds