Currently being updated.
Automatic reload in seconds.


 
Subscribe: RSS Podcast iTunes
Episode 664             Episode 666
Episode 665

Germanium
Fri, 2019-Mar-01 01:04 UTC
Length - 3:12

Direct Link

Welcome to featured Wiki of the Day where we read the summary of the featured Wikipedia article every day.

The featured article for Friday, 1 March 2019 is Germanium.

Germanium is a chemical element with symbol Ge and atomic number 32. It is a lustrous, hard, grayish-white metalloid in the carbon group, chemically similar to its group neighbors silicon and tin. Pure germanium is a semiconductor with an appearance similar to elemental silicon. Like silicon, germanium naturally reacts and forms complexes with oxygen in nature.

Because it seldom appears in high concentration, germanium was discovered comparatively late in the history of chemistry. Germanium ranks near fiftieth in relative abundance of the elements in the Earth's crust. In 1869, Dmitri Mendeleev predicted its existence and some of its properties from its position on his periodic table, and called the element ekasilicon. Nearly two decades later, in 1886, Clemens Winkler found the new element along with silver and sulfur, in a rare mineral called argyrodite. Although the new element somewhat resembled arsenic and antimony in appearance, the combining ratios in compounds agreed with Mendeleev's predictions for a relative of silicon. Winkler named the element after his country, Germany. Today, germanium is mined primarily from sphalerite (the primary ore of zinc), though germanium is also recovered commercially from silver, lead, and copper ores.

Elemental germanium is used as a semiconductor in transistors and various other electronic devices. Historically, the first decade of semiconductor electronics was based entirely on germanium. Today, the amount of germanium produced for semiconductor electronics is one fiftieth the amount of ultra-high purity silicon produced for the same. Presently, the major end uses are fibre-optic systems, infrared optics, solar cell applications, and light-emitting diodes (LEDs). Germanium compounds are also used for polymerization catalysts and have most recently found use in the production of nanowires. This element forms a large number of organometallic compounds, such as tetraethylgermane, useful in organometallic chemistry.

Germanium is not thought to be an essential element for any living organism. Some complex organic germanium compounds are being investigated as possible pharmaceuticals, though none have yet proven successful. Similar to silicon and aluminium, natural germanium compounds tend to be insoluble in water and thus have little oral toxicity. However, synthetic soluble germanium salts are nephrotoxic, and synthetic chemically reactive germanium compounds with halogens and hydrogen are irritants and toxins.

This recording reflects the Wikipedia text as of 01:04 UTC on Friday, 1 March 2019.

For the full current version of the article, see Germanium on Wikipedia.

This podcast is produced by Abulsme Productions based on Wikipedia content and is released under a Creative Commons Attribution-ShareAlike License.

Visit wikioftheday.com for our archives, sister podcasts, and swag. Please subscribe to never miss an episode. You can also follow @WotDpod on Twitter.

Abulsme Productions produces the current events podcast Curmudgeon's Corner as well. Check it out in your podcast player of choice.

This has been Matthew. Thank you for listening to featured Wiki of the Day.

For current episodes, or for the rest of the Wiki of the Day family of podcasts go here.


Archive Episodes:
1-100  101-200  201-300  301-400  401-500
501-600  601-700  701-800  801-804  

  Buy WotD Stuff!!

Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2019-07-18 10:26:01 UTC
Original calculation time was 1.1191 seconds

Page displayed at 2019-07-22 23:06:42 UTC
Page generated in 0.0048 seconds