Currently being updated.
Automatic reload in seconds.


 
Subscribe: RSS Podcast iTunes
Episode 560             Episode 562
Episode 561

Nihonium
Sat, 2018-Nov-17 01:15 UTC
Length - 3:34

Direct Link

Welcome to featured Wiki of the Day where we read the summary of the featured Wikipedia article every day.

The featured article for Saturday, 17 November 2018 is Nihonium.

Nihonium is a synthetic chemical element with symbol Nh and atomic number 113. It is extremely radioactive; its most stable known isotope, nihonium-286, has a half-life of about 10 seconds. In the periodic table, nihonium is a transactinide element in the p-block. It is a member of period 7 and group 13 (boron group).

Nihonium was first reported to have been created in 2003 by a Russian–American collaboration at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia, and in 2004 by a team of Japanese scientists at Riken in Wakō, Japan. The confirmation of their claims in the ensuing years involved independent teams of scientists working in the United States, Germany, Sweden, and China, as well as the original claimants in Russia and Japan. In 2015, the IUPAC/IUPAP Joint Working Party recognised the element and assigned the priority of the discovery and naming rights for the element to Riken, as it judged that they had demonstrated that they had observed element 113 before the JINR team did so. The Riken team suggested the name nihonium in 2016, which was approved in the same year. The name comes from the common Japanese name for Japan (日本, nihon).

Very little is known about nihonium, as it has only been made in very small amounts that decay away within seconds. The anomalously long lives of some superheavy nuclides, including some nihonium isotopes, are explained by the "island of stability" theory. Experiments support the theory, with the half-lives of the confirmed nihonium isotopes increasing from milliseconds to seconds as neutrons are added and the island is approached. Nihonium has been calculated to have similar properties to its homologues boron, aluminium, gallium, indium, and thallium. All but boron are post-transition metals, and nihonium is expected to be a post-transition metal as well. It should also show several major differences from them; for example, nihonium should be more stable in the +1 oxidation state than the +3 state, like thallium, but in the +1 state nihonium should behave more like silver and astatine than thallium. Preliminary experiments in 2017 showed that elemental nihonium is not very volatile; its chemistry remains largely unexplored.

This recording reflects the Wikipedia text as of 01:15 UTC on Saturday, 17 November 2018.

For the full current version of the article, go to http://en.wikipedia.org/wiki/Nihonium.

This podcast is produced by Abulsme Productions based on Wikipedia content and is released under a Creative Commons Attribution-ShareAlike License.

Visit wikioftheday.com for our archives, sister podcasts, and swag. Please subscribe to never miss an episode. You can also follow @WotDpod on Twitter.

Abulsme Productions produces the current events podcast Curmudgeon's Corner as well. Check it out in your podcast player of choice.

This has been Kimberly. Thank you for listening to featured Wiki of the Day.

For current episodes, or for the rest of the Wiki of the Day family of podcasts go here.


Archive Episodes:
1-100  101-200  201-300  301-400  401-500
501-600  601-700  701-800  801-887  

  Buy WotD Stuff!!

Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2019-10-09 14:01:51 UTC
Original calculation time was 1.2390 seconds

Page displayed at 2019-10-16 18:15:15 UTC
Page generated in 0.0055 seconds