Currently being updated.
Automatic reload in seconds.


 
Subscribe: RSS Podcast iTunes
wikiofthedaymasto.ai
  Buy WotD Stuff!!
Episode 1050             Episode 1052
Episode 1051

Island of stability
Sat, 2020-Mar-21 00:07 UTC
Length - 3:10

Direct Link

Welcome to featured Wiki of the Day where we read the summary of the featured Wikipedia article every day.

The featured article for Saturday, 21 March 2020 is Island of stability.

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted magic numbers of protons and neutrons in the superheavy mass region. Several predictions have been made regarding the exact location of the island of stability, though it is generally thought to center near copernicium and flerovium isotopes in the vicinity of the predicted closed neutron shell at N = 184. These models strongly suggest that the closed shell will confer further stability towards fission and alpha decay. While these effects are expected to be greatest near atomic number Z = 114 and N = 184, the region of increased stability is expected to encompass several neighboring elements, and there may also be additional islands of stability around heavier nuclei that are doubly magic (having magic numbers of both protons and neutrons). Estimates of the stability of the elements on the island are usually around a half-life of minutes or days; some estimates predict half-lives of millions of years. Although the nuclear shell model predicting magic numbers has existed since the 1940s, the existence of long-lived superheavy nuclides has not been definitively demonstrated. Like the rest of the superheavy elements, the nuclides on the island of stability have never been found in nature; thus, they must be created artificially in a nuclear reaction to be studied. Scientists have not found a way to carry out such a reaction, for it is likely that new types of reactions will be needed to populate nuclei near the center of the island. Nevertheless, the successful synthesis of superheavy elements up to Z = 118 (oganesson) with up to 177 neutrons demonstrates a slight stabilizing effect around elements 110 to 114 that may continue in unknown isotopes, supporting the existence of the island of stability.

This recording reflects the Wikipedia text as of 00:07 UTC on Saturday, 21 March 2020.

For the full current version of the article, see Island of stability on Wikipedia.

This podcast is produced by Abulsme Productions based on Wikipedia content and is released under a Creative Commons Attribution-ShareAlike License.

Visit wikioftheday.com for our archives, sister podcasts, and swag. Please subscribe to never miss an episode. You can also follow @WotDpod on Twitter.

Abulsme Productions produces the current events podcast Curmudgeon's Corner as well. Check it out in your podcast player of choice.

This has been Salli. Thank you for listening to featured Wiki of the Day.

Archive
2017:MayJunJulAugSepOctNovDec
2018:JanFebMarAprMayJunJulAugSepOctNovDec
2019:JanFebMarAprMayJunJulAugSepOctNovDec
2020:JanFebMarAprMayJunJulAugSepOctNovDec
2021:JanFebMarAprMayJunJulAugSepOctNovDec
2022:JanFebMarAprMayJunJulAugSepOctNovDec
2023:JanFebMarAprMayJunJulAugSepOctNovDec
2024:JanFebMarApr

Most Recent Episodes


Feedback welcome at feedback@wikioftheday.com.

These podcasts are produced by Abulsme Productions based on Wikipedia content.

They are released under a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Creative Commons License

Abulsme Productions also produces Curmudgeon's Corner, a current events podcast.

If you like that sort of thing, check it out too!


Page cached at 2024-04-17 02:29:40 UTC
Original calculation time was 3.4736 seconds

Page displayed at 2024-04-18 10:46:40 UTC
Page generated in 0.0031 seconds